Nuevas estructuras de redes ópticas son estudiadas por científicos chilenos

01-12-18 Hugo Arellano 0 comentarios

Determinar cómo se comporta la luz al viajar por distintos materiales y así controlar mejor la información que pasa por dispositivos ópticos, es el resultado de la investigación de un grupo de científicos del Departamento de Física FCFM de la Universidad de Chile y del Instituto Milenio de Óptica MIRO, el resultado que avanza en el camino de la computación óptica apareció en la última versión de la revista Physical Review A.
 
El Doctor Rodrigo Vicencio, quien dirige el grupo de Redes Fotónicas del Instituto Milenio de Óptica MIRO indica “buscamos aprender cómo la luz viaja y cómo se auto atrapa en diversos materiales fotónicos, donde la geometría elegida determina, de forma importante, las propiedades que la luz experimentará”, agregando que de esta manera podrían dirigir de mejor manera la información de tipo óptica y así distribuirla controladamente en una red fotónica arbitraria, siendo un paso importante para la futura computación óptica, que sería más rápida que los actuales computadores electrónicos. 
 
Para lograr lo anterior los científicos estudiaron un manojo de fibras ópticas, con una geometría muy específica (una red denominada de Lieb), donde demostraron que es posible transportar controladamente la luz localizada en regiones espaciales muy pequeñas (20 micrómetros).
 
“Antes de este trabajo sólo se había predicho transporte controlado de luz en redes con geometría de Kagome. Con nuestros resultados demostramos que existe un mayor número de geometrías en las que sería posible observar un atrapamiento y un transporte controlado, por lo tanto, más opciones en la práctica de usar cristales fotónicos en aplicaciones que controlen y distribuyan información de tipo óptica”, explica Vicencio, quien es también académico del Departamento de Física de la FCFM de la Universidad de Chile.

Este trabajo es parte de una investigación anterior sobre redes fotónicas, donde surgió la necesidad de estudiar otras configuraciones posibles, para lo cual desarrollaron un análisis numérico con herramientas de programación. El siguiente paso será la comprobación experimental.

Una gran oportunidad

“Es difícil crear las condiciones experimentales para corroborar nuestras predicciones, y en el caso de lograrlo estaríamos en condiciones únicas a nivel mundial para demostrar transporte controlado de luz en cristales fotónicos, con su consecuente posibilidad en aplicaciones fotónicas en Chile”, concluyé el académico.

La conclusiones de esta investigación aparecieron en la última edición de la revista científica Physical Review A, el trabajo fue liderado por el también investigador MIRO y Magíster en Ciencias mención Física, Bastián Real. Para ver el paper origina revisar la siguiente dirección web https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.053845
Comparte en...Share on FacebookTweet about this on Twitter